If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8p^2-16p+2=0
a = 8; b = -16; c = +2;
Δ = b2-4ac
Δ = -162-4·8·2
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{3}}{2*8}=\frac{16-8\sqrt{3}}{16} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{3}}{2*8}=\frac{16+8\sqrt{3}}{16} $
| 2/7=m/m+4 | | 2000=x-(x*0.22) | | r8=96 | | (7w-6)(9w-5)=(63w^2-89w+30) | | 2x+12+3x=72 | | 4x+3x+46=180 | | -3b+108=5b+44 | | E=2f | | 23x-12=34 | | 3x*3x-9x=0 | | x-(.5x+2000)=0 | | 12f-92=52 | | 6x+9.5=-5.5 | | 6x+9.5=5.5 | | 3x(+x)-7=78 | | 3n=5+6n | | 3x+x-7=78 | | 45x-15x= | | 3-10x=9-4x(42+6x) | | 5x-4)=2(x+5) | | 22m+12=100 | | 2.7=|−9p | | 2.7=−9p | | 3(w+2)-10+2w=2(2w+2) | | 4x^2-12x-16=4x-8 | | 4x–22=40 | | 2(3+x)=2x-3+2x-3 | | 4n^2=112-12n | | 15x^2-46x-10=0 | | .6-2(r-3)=6r+2(3r+1)-r | | 21=-7/3u | | f-9=4 |